Kohlenwasserstoffverbrückte Metallkomplexe, XXII<sup>1)</sup>



## Addition von anionischen Fischer-Carben-Komplexen an koordinierte ungesättigte Kohlenwasserstoffe unter C-C-Kupplung

Josef Breimair, Torsten Weidmann, Barbara Wagner<sup>2)</sup> und Wolfgang Beck\*

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, W-8000 München 2

Eingegangen am 18. Mai 1991

Key Words: Fischer carbene complexes, anionic / Carbene, methoxy(pentacarbonylrheniopropyl) / Chromium complexes / Molybdenum complexes / Tungsten complexes / Rhenium complexes

## Hydrocarbon-Bridged Metal Complexes, $XXII^{1}$ . – Addition of Anionic Fischer Carbene Complexes to Coordinated Unsaturated Hydrocarbons with C-C Coupling

The addition of  $[(OC)_5MC(OMe)CH_2]^-$  (M=Cr,W) to the cationic complexes  $[(OC)_5Re(C_2H_4)]^+$  and  $[(OC)_3M'~(\eta^2-C_7H_7)]^+~(M'=Cr,~Mo)$  affords the bimetallic hydrocarbon-bridged complexes  $(OC)_5M=C(OMe)CH_2CH_2CH_2Re(CO)_5~(1)$  and

 $(OC)_5M = C(OMe)CH_2C_7H_7 - \eta^6 - M'(CO)_3$  (2), respectively. The structures of 1a and 2d have been determined by X-ray diffraction.

Die Acidität von Wasserstoffatomen in Alkylgruppen, die in  $\alpha$ -Stellung zum Carben-C-Atom in Fischer-Carben-Komplexen stehen, wurde schon frühzeitig festgestellt<sup>3</sup>. Die Anionen [(OC)<sub>5</sub>MC(OMe)CH<sub>2</sub>]<sup>-4</sup> (M = Cr, W) lassen sich an der Methylen-Gruppe alkylieren<sup>5</sup> und silylieren<sup>6</sup>. Ebenso können sie zur Darstellung funktioneller Carben-Komplexe<sup>7</sup> und in der organischen Synthese eingesetzt werden<sup>8</sup>.

Wir fanden, daß sich diese Anionen an koordinierte, ungesättigte Kohlenwasserstoffe in kationischen Komplexen addieren lassen, wobei neuartige, heterodimetallische Kohlenwasserstoff-verbrückte Verbindungen entstehen. So setzen sich die Anionen [(OC)<sub>5</sub>MC(OMe)CH<sub>2</sub>]<sup>-</sup> (M = Cr, W) mit dem kationischen Ethen-Rhenium-Komplex [(OC)<sub>5</sub>-Re(C<sub>2</sub>H<sub>4</sub>)]<sup>+</sup> zu den Komplexen 1 mit Methoxy-3-(pentacarbonylrhenio)propyl-Carben-Liganden um. Ebenso lassen sich die Carben-Metall-Anionen an die Tropylium-Komplexe [( $\eta^7$ -C<sub>7</sub>H<sub>7</sub>)M'(CO)<sub>3</sub>]<sup>+</sup> (M' = Cr, Mo) unter C-C-Kupplung addieren, wobei die Verbindungen 2 entstehen. Die kationischen  $\pi$ -Komplexe verhalten sich hier als starke Alkylierungsmittel, da die Carben-Metall-Anionen mit schwachen Elektrophilen nicht reagieren<sup>9</sup>.

Das Kation  $[(OC)_5 Re(C_2H_4)]^+$  läßt sich bei verschiedenen Reaktionen als Ethyl- oder Propyl-Carbenium-Ion auffassen  $[H^+$  bzw.  $CH_3^+$  ist isolobal mit  $Re(CO)_5^+]^{10}$ .

Die thermisch recht stabilen Komplexe 1 und 2 entstehen in guten Ausbeuten. Produkte wie  $\text{Re}_2(\text{CO})_{10}$  oder das bekannte Dimer<sup>11</sup> (OC)<sub>3</sub>M'(C<sub>7</sub>H<sub>7</sub>-C<sub>7</sub>H<sub>7</sub>)M'(CO)<sub>3</sub> (M' = Cr, Mo) ließen sich nur in sehr geringen Mengen nachweisen. Dies spricht dafür, daß die Reaktionen nicht über 17- bzw. 19-Elektronen-Radikale wie [(OC)<sub>5</sub>MC(OMe)CH<sub>2</sub>], [(C<sub>2</sub>H<sub>4</sub>)-Re(CO)<sub>5</sub>] oder [(C<sub>7</sub>H<sub>7</sub>)M(CO)<sub>3</sub>] verlaufen. Von Kochi et al. wurde vor kurzem bei solchen Reaktionen die Konkurrenz zwischen nucleophiler Addition und der über Radikale verlaufenden Elektronen-Transfer-Reaktion betont<sup>12</sup>.

Die vCO-Banden im IR-Spektrum von 1 und 2 entsprechen der Erwartung. Charakteristisch sind die A<sub>1</sub>-Banden der Re(CO)<sub>5</sub>- bzw. M(CO)<sub>5</sub>-Gruppen (M = Cr, W) bei 2125 bzw. 2060-2070 cm<sup>-1</sup>.



Die chemische Verschiebung der Carben-C-Atome in den <sup>13</sup>C-NMR-Spektren von 1 und 2 bei tiefem Feld weisen diese Komplexe als typische Fischer-Metall-Carbene aus. Durch Vergleich von 1 mit den Kohlenwasserstoff-verbrückten Komplexen (OC)<sub>5</sub>ReCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Re(CO)<sub>5</sub><sup>13,14</sup> und Cp(OC)<sub>2</sub>-

Chem. Ber. 124 (1991) 2431 – 2434 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1991 0009 – 2940/91/1111 – 2431 \$ 3.50 + .25/0

 $FeCH_2CH_2CH_2Fe(CO)_2Cp^{15}$  lassen sich die <sup>1</sup>H-NMR-Signale der drei verschiedenen Methylengruppen zuordnen (vgl. exp. Teil).

Interessanterweise stimmt das <sup>1</sup>H-NMR-Spektrum von 1 für die (OC)<sub>5</sub>ReCH<sub>2</sub>-CH<sub>2</sub>-Methylen-Protonen mit dem von (OC)<sub>5</sub>ReCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Re(CO)<sub>5</sub> praktisch überein. Das von Lindner<sup>13</sup> et al. aus den <sup>1</sup>H-NMR-Daten abgeleitete Konformer der Punktgruppe  $C_{2v}$  wird im Kristall von 1a gefunden.

Die Struktur der Verbindungen 1a und 2d wurden durch Röntgenstrukturanalyse gesichert. Die Abstände und Win-



Abb. 1. Molekülstruktur von **1a** im Kristall. Die Schwingungsellipsoide entsprechen 20% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungsabstände [pm] und -winkel [°]: Re1 – C1 230(1), C1 – C2 153(2), C2 – C3 152(2), C3 – C4 155(2), C1 – C4 201.5(16), C4 – O4 132(2); C10 – Re1 – C1 178.8(6), Re1 – C1 – C2 115(1), C1 – C2 – C3 111(1), C2 – C3 – C4 111(1), C1 – C4 – C3 123(1), C1 – C4 – O4 133(1), C4 – Cr1 – C13 171.7(7)



Abb. 2. Molekülstruktur von **2d** im Kristall. Die Schwingungsellipsoide entsprechen 20% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungsabstände [pm] und -winkel [°]: W1-C17 217(1), C17-O9 130(1), C17-C16 152(2), C16-C15 152(2); C5-W1-C17 174.0(5), W1-C17-O9 132(1), W1-C17-C16 120(1), C17-C16-C15 119(1)

kel in dem Fragment (OC)<sub>5</sub>M = C(OMe) stimmen mit denen in typischen Fischer-Carben-Komplexen überein<sup>8)</sup>. Die C-C-Abstände in der Gruppierung C1-C2-C3-C4 in 1a (Abb. 1) entsprechen typischen Einfachbindungen (152-154 pm). Die Re-C- $\sigma$ -Bindung in 1a ist mit 230.0(15) praktisch gleich lang wie in (OC)<sub>5</sub>Re-CH<sub>3</sub><sup>16)</sup> oder in (OC)<sub>5</sub>ReCH<sub>2</sub>CH<sub>2</sub>Re(CO)<sub>5</sub><sup>17)</sup>. Die zu Re-CH<sub>2</sub> trans-ständige Re-(CO)-Bindung ist wegen der Donorwirkung des Alkyl-Restes verkürzt [Zunahme der Re-(CO)-Rückbindung]. Wie bei (OC)<sub>3</sub>Mo( $\mu$ - $\eta^6$ :  $\eta^1$ -C<sub>7</sub>H<sub>7</sub>)Re(CO)<sub>5</sub><sup>18)</sup> sitzt in 2d (Abb. 2) das Carben-Fragment in *exo*-Position des C<sub>7</sub>H<sub>7</sub>-Liganden, in dem wie bei (OC)<sub>3</sub>Mo( $\eta^6$ -C<sub>7</sub>H<sub>8</sub>)<sup>19)</sup> eine Alternanz der koordinierten C-C-Bindungen (135.8-141.3 pm) festgestellt wird.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gilt unser herzlicher Dank für großzügige Förderung. Der Degussa A.G., Wolfgang, danken wir für wertvolle Chemikalien, Herrn Dr. K. Öfele, Technische Universität München, für die Darstellung von  $[(OC)_5 ReC_2 H_4]PF_6$ .

## Experimenteller Teil

Alle Umsetzungen wurden unter Argon mit sorgfältig getrockneten Lösungsmitteln durchgeführt.  $[(OC)_5Re(C_2H_4)]PF_6$  wurde nach der Literatur<sup>20)</sup> unter Anwendung eines geringeren  $C_2H_4$ -Druckes erhalten.  $[(\eta^7-C_7H_7)Mo(CO)_3]BF_4$  wurde ebenfalls nach Literaturvorschrift<sup>21)</sup> dargestellt. - FT-IR: Nicolet 5 ZDX. -NMR: Jeol FX 90, GSX 270; Referenz  $CD_2Cl_2$ .

(OC)<sub>5</sub>CrC(OMe)CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Re(CO)<sub>5</sub> (1a): Eine Lösung von 100 mg (0.4 mmol) (OC)<sub>5</sub>CrC(OCH<sub>3</sub>)CH<sub>3</sub><sup>22)</sup> in 10 ml THF wird auf -78°C gekühlt und mit 0.27 ml (0.41 mmol; 1.5 м in Hexan) nBuLi versetzt. Es wird 1 h gerührt, dann werden zu dieser gelben Lösung 200 mg (0.4 mmol)  $[(OC)_5 Re(C_2H_4)]PF_6$  gegeben. Nach 30 min wird auf -30°C erwärmt, weitere 30 min gerührt und schließlich auf Raumtemp. erwärmt. Nach 20 min wird das Lösungsmittel i.Vak. entfernt und der gelbe Rückstand mehrmals (3 × 20 ml) mit Pentan extrahiert. Die vereinigten Pentanlösungen werden bis auf wenige ml eingeengt, wobei 1a als gelbes Pulver anfällt. Nach Dekantieren des überstehenden Lösungsmittels wird 3 h im Hochvak. getrocknet. Ausb. 193 mg (80%). – IR (Nujol):  $\tilde{v} = 2125 \text{ cm}^{-1}$ , w, 2059 m, 2030 m, 1992 s, 1954 vs, 1922 vs, 1908 sh. - <sup>1</sup>H-NMR (CD<sub>2</sub>Cl<sub>2</sub>, Raumtemp.):  $\delta = 4.75$  (s, OMe), 3.34 [t, C(OMe) - CH<sub>2</sub>], 1.97 (m,  $CH_2CH_2CH_2$ ), 0.954 (m, Re $CH_2$ ). – <sup>13</sup>C-NMR (CD<sub>2</sub>Cl<sub>2</sub>, Raumtemp.):  $\delta = 256.52$  (Cr = C); 223.87 (CrCO<sub>ax</sub>), 216.88 (CrCO<sub>eq</sub>); 185.84 (ReCO<sub>eq</sub>), 181.45 (ReCO<sub>ax</sub>); 70.96 (OMe); 67.71 [(CO-Me) –  $CH_2$ ]; 36.15 (CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>); 0.96 (CH<sub>2</sub>Re).

> C<sub>15</sub>H<sub>9</sub>CrO<sub>11</sub>Re (603.2) Ber. C 29.84 H 1.49 Gef. C 30.01 H 1.78

 $(OC)_{5}WC(OMe)CH_{2}CH_{2}CH_{2}Re(CO)_{5}$  (1b): Analog wird 1b durch Reaktion von 100 mg (0.26 mmol) (OC)\_{5}WC(OMe)CH<sub>3</sub><sup>22)</sup> mit 0.18 ml (0.27 mmol) *n*BuLi und 130 mg (0.26 mmol) [(OC)\_{5}Re-(C<sub>2</sub>H<sub>4</sub>)]PF<sub>6</sub> in 70proz. Ausb. erhalten (134 mg). – IR (Pentan):  $\tilde{v} =$ 2128 cm<sup>-1</sup>, w, 2071 m, 2047 w, 2014 vs, 1985 s, 1955 s,sh; 1945 s. – <sup>1</sup>H-NMR (CD<sub>2</sub>Cl<sub>2</sub>, Raumtemp.):  $\delta =$  4.61 (s, OMe); 3.27 [t, J =7.3 Hz, C(OMe) –  $CH_{2}$ ]; 1.99 (m, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>); 0.99 (m, CH<sub>2</sub>Re). – <sup>13</sup>C-NMR (CD<sub>2</sub>Cl<sub>2</sub>, Raumtemp.):  $\delta =$  256.59 (W=C); 197.74 (WCO<sub>eq</sub>); 185.64 (ReCO<sub>eq</sub>), 181.48 (ReCO<sub>ax</sub>); 72.91 (OMe); 70.70 [C(OMe) –  $CH_{2}$ ]; 36.47 (CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>).

 $\begin{array}{rl} C_{15}H_9O_{11}ReW \ (735.0) & \mbox{Ber. C} \ 24.51 \ H \ 1.22 \\ & \mbox{Gef. C} \ 23.87 \ H \ 1.13 \end{array}$ 

Komplexe  $(OC)_5 M = C(OMe)CH_2C_7H_7 - \eta^6 - M'(CO)_3$  (2): Eine Lösung von 1.00 mmol (OC)<sub>5</sub>M = C(OCH<sub>3</sub>)CH<sub>3</sub><sup>22)</sup> in 5 ml THF wird auf -78°C gekühlt. Zu der klaren hellgelben Lösung spritzt man die äquimolare Menge nBuLi in Hexan (0.67 ml; 1.5 M) und rührt ca. 30 min bei Trockeneistemp. Die Lösung verändert ihre Farbe nicht. Man gibt 1.00 mmol  $[(\eta^7 - C_7 H_7)M'(CO)_3]BF_4$  dazu; innerhalb weniger Sekunden färbt sich die Reaktionsmischung dunkelrot. Nach 45 min läßt man auf Raumtemp. auftauen und entfernt das Lösungsmittel i.Vak. Der ölige braunrote Rückstand wird in wenig  $CH_2Cl_2$  aufgenommen (ca. 2 ml) und über eine Säule (2 × 12 cm, Kieselgel 60) geschickt. Mit CH<sub>2</sub>Cl<sub>2</sub> läßt sich eine orangefarbene Bande eluieren. Nach Entfernen des Lösungsmittels i.Vak. bleibt das Produkt als analysenreines orangerotes Pulver zurück. Für eine Röntgenstrukturanalyse geeignete Kristalle (2d) können durch Überschichten einer gesättigten Lösung in CH2Cl2 mit MeOH und Kühlen auf  $-30^{\circ}$ C erhalten werden.

**2a**: Ausb. 322 mg (65%), Zers. ab 114°C. – IR (CH<sub>2</sub>Cl<sub>2</sub>):  $\tilde{v} = 2064 \text{ cm}^{-1}$  w, 1980 s, 1943 vs, 1918 s,sh, 1885 m (CO). – <sup>1</sup>H-NMR

Tab. 1. Röntgenographische Daten von 1a und 2d

|                                        | 1a <sup>23</sup> )                                  | 2d <sup>23</sup> )                                 |
|----------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| Kristall-Parameter                     |                                                     |                                                    |
| Summenformel                           | C <sub>15</sub> H <sub>9</sub> CrO <sub>11</sub> Re | С <sub>18</sub> Н <sub>12</sub> МоО <sub>9</sub> W |
| Molmasse [g/mol]                       | 603.4                                               | 652.1                                              |
| Kristallgröße [mm]                     | 0.4x0.5x0.1                                         | 0.35x0.4x0.25                                      |
| Kristallsystem                         | orthorhombisch                                      | monoklin                                           |
| Raumgruppe                             | P212121                                             | P2 <sub>1</sub> /n                                 |
| a [pm]                                 | 641.6(1)                                            | 658.3(3)                                           |
| b [pm]                                 | 696.8(1)                                            | 1074.7(5)                                          |
| c [pm]                                 | 4430(1)                                             | 2845(1)                                            |
| α [*]                                  | 90                                                  | 90                                                 |
| ß [*]                                  | 90                                                  | 92.51(4)                                           |
| Υ [°]                                  | 90                                                  | 90                                                 |
| V [nm <sup>3</sup> ]                   | 1.9806(8)                                           | 2.010(2)                                           |
| Z                                      | 4                                                   | 4                                                  |
| $\rho_{\rm ber} [g/cm^{-3}]$           | 2.02                                                | 2.15                                               |
| $\mu \text{ [mm^{-1}]}$                | 6.78                                                | 6.49                                               |
| Meßparameter                           |                                                     |                                                    |
| Meßtemperatur [°C]                     | 20                                                  | 20                                                 |
| Meßbereich 20 [°]                      | 2-50                                                | 4-50                                               |
| Meßgeschw. [°/min]                     | 1.9-29.3                                            | 4-30                                               |
| Scanbreite/Untergr. [°]                | 1.3/0.5                                             | 1.2/0.5                                            |
| Reziprokes Gitter                      | +h,+k, <u>+</u> l                                   | <u>+</u> h,+k, <u>+</u> l                          |
| Gemessene Reflexe                      | 4105                                                | 6672                                               |
| Symm. unabh. Reflexe                   | 3494                                                | 3504                                               |
| beobachtet mit                         |                                                     |                                                    |
| I>20(I)                                | 3059                                                | 2857                                               |
| Strukturlösung und Verf                | einerung                                            |                                                    |
| Lösung Phasenproblem                   | direkte Meth.                                       | Patterson                                          |
| R                                      | 0.054                                               | 0.070                                              |
| R <sub>w</sub>                         | 0.056                                               | 0.071                                              |
| g                                      | 0.0007                                              | 0.0007                                             |
| Verf. Parameter                        | 251                                                 | 127                                                |
| GOOF                                   | 1.83                                                | 2.18                                               |
| RestelektrDichte                       |                                                     |                                                    |
| [e·10 <sup>-6</sup> pm <sup>-3</sup> ] | +1.24/-2.43                                         | +1.29/-2.13                                        |
| Emp.Abs.korr.                          |                                                     |                                                    |
| (min./max.rel.Trans.)                  | 0.070/0.127                                         | 0.065/0.100                                        |

(270 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 2.44$  (d, 2H, CH<sub>2</sub>), 3.34–3.51 (m, 1H), 3.57–3.76 (m, 2H), 4.79 (s, 3H, OMe), 4.82 (s, 2H), 6.07 (s, 2H). – <sup>13</sup>C-NMR (67.80 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 32.95$  (CH<sub>2</sub>), 66.09 (OCH<sub>3</sub>), 68.31, 71.35, 98.60, 99.38, 211.91 (CrCO<sub>ax</sub>), 216.30 (CrCO<sub>äq</sub>), 231.91 [Cr(CO)<sub>3</sub>], 358.34 (Carben-C).

 $\begin{array}{rl} C_{18}H_{12}Cr_{2}O_{9} \ (476.3) & \text{Ber. C } 45.39 \ \text{H } 2.54 \\ & \text{Gef. C } 45.55 \ \text{H } 2.61 \end{array}$ 

**2b**: Ausb. 362 mg (67%), Zers. ab 108 °C. – IR (CH<sub>2</sub>Cl<sub>2</sub>):  $\tilde{v} = 2064 \text{ cm}^{-1}$  w, 1983 s, 1942 vs, 1925 s, sh, 1887 m (CO). – <sup>1</sup>H-NMR (270 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 2.70$  (d, 2H, CH<sub>2</sub>), 3.52–3.58 (m, 1H), 3.83–3.87 (m, 2H), 4.80 (s, 3H, OMe), 4.90–4.96 (m, 2H), 6.03–6.11 (m, 2H). – <sup>13</sup>C-NMR (67.80 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 36.20$  (CH<sub>2</sub>), 68.33, 68.48 (OCH<sub>3</sub>), 73.07, 97.60, 100.99, 201.40 (MoCO), 211.90 (CrCO<sub>ax</sub>), 216.31 (CrCO<sub>äq</sub>), 358.36 (Carben-C).

C<sub>18</sub>H<sub>12</sub>CrMoO<sub>9</sub> (520.2) Ber. C 41.56 H 2.33 Gef. C 42.28 H 2.82

**2c:** Ausb. 443 mg (70%), Zers. ab 97°C. – IR (CH<sub>2</sub>Cl<sub>2</sub>):  $\tilde{v} = 2071 \text{ cm}^{-1}$  w, 1978 s, 1941 vs, br, 1920 s, sh, 1886 m (CO). – <sup>1</sup>H-NMR (270 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 2.26$  (d, 2H, CH<sub>2</sub>), 3.46–3.57 (m, 1H), 3.66–3.74 (m, 2H), 4.60 (s, 3H, OMe), 4.80–4.86 (m, 2H), 6.01–6.09 (m, 2H). – <sup>13</sup>C-NMR (67.80 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 33.16$  (CH<sub>2</sub>), 66.06 (OCH<sub>3</sub>), 70.93, 73.18, 98.56, 99.42, 191.56 (WCO<sub>ax</sub>, <sup>1</sup>J<sub>cw</sub> = 127 Hz), 197.22 (WCO<sub>äq</sub>, <sup>1</sup>J<sub>cw</sub> = 128 Hz), 231.90 (CrCO), 331.80 (Carben-C, <sup>1</sup>J<sub>cw</sub> = 103 Hz).

2d: Ausb. 407 mg (60%), Zers. ab  $113^{\circ}$ C. – IR (CH<sub>2</sub>Cl<sub>2</sub>):  $\tilde{v} = 2072 \text{ cm}^{-1}$  w, 1983 s, 1939 vs, br, 1890 m (CO). – <sup>1</sup>H-NMR (270 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 2.52$  (d, 2H, CH<sub>2</sub>), 3.51–3.63 (m, 1H), 3.89 (t, 2H), 4.61 (s, 3H, OMe), 4.89–4.99 (m, 2H), 6.01–6.14 (m, 2H). – <sup>13</sup>C-NMR (67.80 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 36.47$  (CH<sub>2</sub>), 68.49 (OMe), 70.96, 74.99, 97.61, 101.06, 191.59 (WCO<sub>ax</sub>, <sup>1</sup>J<sub>cw</sub> = 127 Hz), 197.30 (WCO<sub>āq</sub>, <sup>1</sup>J<sub>cw</sub> = 127 Hz), 201.41 (MoCO), 331.86 (Carben-C). C<sub>18</sub>H<sub>12</sub>MoO<sub>9</sub>W (652.1) Ber. C 33.16 H 1.85

Gef. C 32.83 H 1.90

Tab. 2. Atomkoordinaten (× 10<sup>4</sup>) und äquivalente isotrope thermische Parameter ( $pm^2 \times 10^{-1}$ ) von 1a

|       |           | ·         |         |        |
|-------|-----------|-----------|---------|--------|
|       | x         | Y         | Z       | U(eq)  |
| Re(1) | 741       | 9609      | 9427(1) | 42(1)  |
| Cr(1) | -4164(4)  | 14926(3)  | 8175(1) | 39(1)  |
| C(1)  | -2096(23) | 10539(28) | 9145(3) | 49(5)  |
| C(2)  | -1587(24) | 11232(29) | 8825(3) | 56(6)  |
| C(3)  | -3569(25) | 11586(27) | 8644(4) | 57(6)  |
| C(4)  | -3073(24) | 12393(23) | 8327(3) | 43(5)  |
| 0(4)  | -1904(18) | 11042(17) | 8206(3) | 58(4)  |
| C(5)  | -1089(34) | 11216(27) | 7898(3) | 71(7)  |
| C(6)  | -696(33)  | 10777(25) | 9789(4) | 64(6)  |
| 0(6)  | -1583(26) | 11429(25) | 9967(3) | 110(8) |
| C(7)  | 1985 (26) | 12166(28) | 9327(4) | 55(6)  |
| 0(7)  | 2645(24)  | 13614(20) | 9270(3) | 82(5)  |
| C (8) | 1990(26)  | 8499(26)  | 9051(4) | 55(6)  |
| 0(8)  | 2733(23)  | 7880(22)  | 8849(3) | 82(6)  |
| C(9)  | -797(32)  | 7142(26)  | 9483(3) | 58(6)  |
| 0(9)  | -1670(23) | 5777(19)  | 9511(3) | 87(6)  |
| C(10) | 3154(30)  | 8858(28)  | 9674(3) | 58(6)  |
| 0(10) | 4564 (23) | 8334 (26) | 9804(3) | 99(7)  |
| C(11) | -3050(27) | 15911(24) | 8535(4) | 57(6)  |
| 0(11) | -2357(25) | 16486(22) | 8755(3) | 88(6)  |
| C(12) | -5273(28) | 13834(28) | 7823(4) | 58(6)  |
| 0(12) | -6021(26) | 13187(25) | 7615(3) | 95(6)  |
| C(13) | -5394(29) | 17336(26) | 8087(4) | 57(6)  |
| 0(13) | -6126(23) | 18768(21) | 8038(3) | 85(6)  |
| C(14) | -1697(26) | 15665(26) | 7966(4) | 51(5)  |
| 0(14) | -318(20)  | 16212(20) | 7832(4) | 82(5)  |
| C(15) | -6729(26) | 14346(31) | 8362(4) | 61(6)  |
| 0(15) | -8261(20) | 14085(26) | 8481(3) | 91(6)  |

Röntgenstrukturanalyse von 1a und 2d: Daten zur Durchführung der Analysen und Ergebnisse enthalten die Tabellen 1-3.

Tab. 3. Atomkoordinaten (× 10<sup>4</sup>) und äquivalente isotrope thermische Parameter ( $pm^2 \times 10^{-1}$ ) von **2d** 

|       | x         | Y        | z       | Ŭ(eq)  |
|-------|-----------|----------|---------|--------|
| Mo(1) | 6484(2)   | 7126(1)  | 1959(1) | 44(1)  |
| C(6)  | 7547(21)  | 6464(12) | 2570(5) | 56(3)  |
| 0(6)  | 8092(17)  | 6100(10) | 2930(4) | 79(3)  |
| C(7)  | 5096(22)  | 8342(14) | 2334(5) | 63(4)  |
| 0(7)  | 4343(18)  | 9104(11) | 2557(4) | 84(3)  |
| C(8)  | 8720(20)  | 8291(13) | 1971(5) | 54(3)  |
| 0(8)  | 10059(17) | 9032(12) | 1952(4) | 88(3)  |
| W(1)  | 2110(1)   | 2326(1)  | 510(1)  | 48(1)  |
| C(1)  | 821(23)   | 4018(14) | 500(5)  | 66(4)  |
| 0(1)  | 200 (20)  | 5002(13) | 512(5)  | 100(4) |
| C(2)  | -335(24)  | 1590(14) | 777(5)  | 69(4)  |
| 0(2)  | -1848(22) | 1161(13) | 913(5)  | 111(4) |
| C(3)  | 3440(21)  | 658(13)  | 546(5)  | 59(3)  |
| 0(3)  | 4200(19)  | -315(12) | 561(4)  | 94(4)  |
| C(4)  | 4507(21)  | 2979(13) | 170(5)  | 57(3)  |
| 0(4)  | 5763(18)  | 3352(12) | -51(4)  | 91(3)  |
| C(5)  | 808(21)   | 1937(13) | -108(5) | 58(3)  |
| 0(5)  | 15(18)    | 1681(11) | -476(4) | 87(3)  |
| C(9)  | 4373(18)  | 5238(11) | 1863(4) | 47(3)  |
| C(10) | 3428(21)  | 6291(12) | 1687(5) | 58(3)  |
| C(11) | 4114 (23) | 7084(13) | 1340(5) | 65 (4) |
| C(12) | 6014(21)  | 7157(12) | 1149(5) | 59(3)  |
| C(13) | 7705 (20) | 6393(12) | 1270(4) | 52(3)  |
| C(14) | 7779(20)  | 5338(11) | 1533(4) | 51(3)  |
| C(15) | 6014(19)  | 4528(12) | 1615(4) | 49(3)  |
| C(16) | 5226(21)  | 3965(13) | 1152(5) | 58(3)  |
| C(17) | 3652(19)  | 2933(12) | 1160(5) | 51(3)  |
| C(18) | 2290(24)  | 1511(15) | 1717(6) | 78(4)  |
| 0(9)  | 3569(15)  | 2532(8)  | 1589(4) | 62(2)  |

## CAS-Registry-Nummern

1a: 135227-25-7 / 1b: 135227-26-8 / 2a: 135256-15-4 / 2b: 135256-**14**-3 / **2c**: 135256-16-5 / **2d**: 135256-17-6 / (OC)<sub>5</sub>CrC(OCH<sub>3</sub>)CH<sub>3</sub>: 20540-69-6 / (OC)<sub>5</sub>WC(OCH<sub>3</sub>)CH<sub>3</sub>: 20540-70-9 / [(OC)<sub>5</sub>Re(C<sub>2</sub>H<sub>4</sub>)]-PF<sub>6</sub>: 31922-27-7 / [( $\eta^{7}$ -C<sub>7</sub>H<sub>7</sub>)Cr(CO)<sub>3</sub>]BF<sub>4</sub>: 12170-19-3 / [( $\eta^{7}$ -C<sub>7</sub>H<sub>7</sub>)-Mo(CO)<sub>3</sub>]BF<sub>4</sub>: 12170-21-7

- <sup>2)</sup> Röntgenstrukturanalyse.

- <sup>3)</sup> C. G. Kreiter, Angew. Chem. 80 (1968) 402; Angew. Chem. Int. Ed. Engl. 7 (1968) 390.
- <sup>4)</sup> C. P. Casey, R. L. Anderson, J. Am. Chem. Soc. 96 (1974) 1230. <sup>50</sup> C. P. Casey, R. L. Anderson, J. Am. Chem. Soc. 50 (1974) 1230.
   <sup>51</sup> C. P. Casey, R. A. Boggs, D. F. Marten, J. C. Calabrese, J. Chem. Soc., Chem. Commun. 1973, 243; C. P. Casey, R. A. Boggs, R. L. Anderson, J. Am. Chem. Soc. 94 (1972) 8947; C. P. Casey, R. L. Anderson, J. Organomet. Chem. 73 (1974) C28; Y.-Ch. Xu, W. D. Wulff, J. Org. Chem. 52 (1987) 3263; W. D. Wulff, S. R. Gilbertson, J. Am. Cham. Soc. 107 (1985) 503 bertson, J. Am. Chem. Soc. 107 (1985) 503.
- <sup>6)</sup> D. W. Macomber, P. Madhukar, R. D. Rogers, Organometallics 8 (1989) 1275
- <sup>7)</sup> R. Aumann, H. Heinen, Chem. Ber. 120 (1987) 537; R. Aumann, S. Althaus, C. Krüger, P. Betz, ibid. 122 (1989) 357; R. Aumann, P. Hinterding, ibid. 123 (1990) 611, 2047; R. Aumann, J. Schröder, ibid. 123 (1990) 2053.
- <sup>8)</sup> K. H. Dötz, H. Fischer, P. Hofmann, F. R. Kreissl, U. Schubert, K. Weiss, Transition Metal Carben Complexes, Verlag Chemie, Weinheim 1983.
- 9) C. P. Casey, W. R. Brunsvold, D. M. Scheck, Inorg. Chem. 16 (1977) 3059.
- <sup>10)</sup> R. Hoffmann, Angew. Chem. 94 (1982) 725; Angew. Chem. Int. Ed. Engl. 21 (1982) 711.
- <sup>11)</sup> E. W. Abel, M. A. Bennett, R. Burton, G. Wilkinson, J. Chem. Soc. 1958, 4559.
- <sup>12)</sup> R. E. Lehmann, T. M. Bockman, J. K. Kochi, J. Am. Chem. Soc.
  112 (1990) 458; R. E. Lehmann, J. K. Kochi, Organometallics 10 (1991) 190.
- <sup>13)</sup> E. Lindner, M. Pabel, K. Eichele, J. Organomet. Chem. 386 (1990) 187.
- <sup>14)</sup> S. F. Mapolic, J. R. Moss, J. Chem. Soc., Dalton Trans. 1990, 299.
- <sup>15)</sup> L. Pope, P. Sommerville, M. Laing, K. J. Hindson, J. R. Moss, J. Organomet. Chem. 112 (1976) 309.
   <sup>16</sup> D. W. H. Rankin, A. Robertson, J. Organomet. Chem. 105 (1976)
- 331.
- <sup>17)</sup> K. Raab, U. Nagel, W. Beck, Z. Naturforsch., Teil B, 38 (1983) 1466.
- <sup>18)</sup> H.-J. Müller, U. Nagel, M. Steimann, K. Polborn, W. Beck, Chem. Ber. 122 (1989) 1387.
- <sup>(19)</sup> J. D. Dunitz, P. Pauling, *Helv. Chim. Acta* **43** (1960) 2188. <sup>(20)</sup> E. O. Fischer, K. Ofele, *Angew. Chem.* **74** (1962) 76; *Angew. Chem. Int. Ed. Engl.* **1** (1962) 75.
- <sup>21)</sup> J. D. Munro, P. L. Pauson, J. Chem. Soc. 1961, 3475. <sup>22)</sup> E. O. Fischer, A. Maasböl, Chem. Ber. 100 (1967) 2445.
- <sup>23)</sup> Kristalle von 1a aus Pentan. Nicolet-R3-Diffraktometer. Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55408, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[203/91]

<sup>&</sup>lt;sup>1)</sup> XXI. Mitteilung: B. Niemer, J. Breimair, T. Völkel, B. Wagner, K. Polborn, W. Beck. Chem. Ber. 124 (1991) 2237.